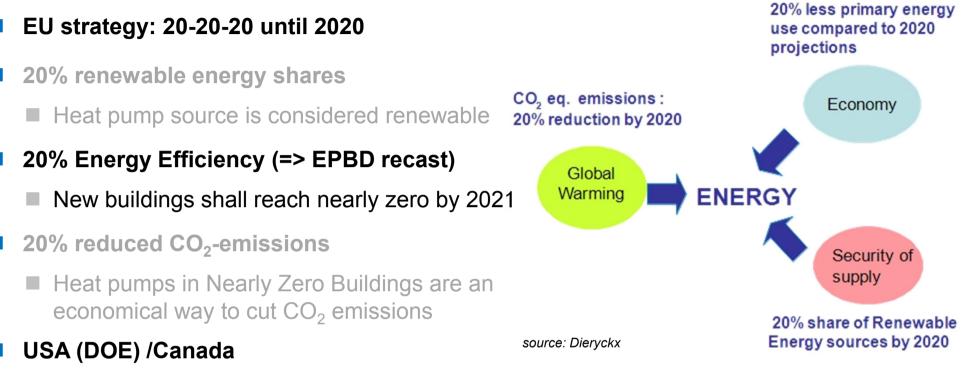
IEA HPP Annex 40

Heat pump concepts for Nearly Zero Energy Buildings Project outline IEA HPP Annex 40


Carsten Wemhoener, HSR - University of Applied Sciences Rapperswil

SHC Task definition workshop, Paris, March 2013

FHO Fachhochschule Ostschweiz

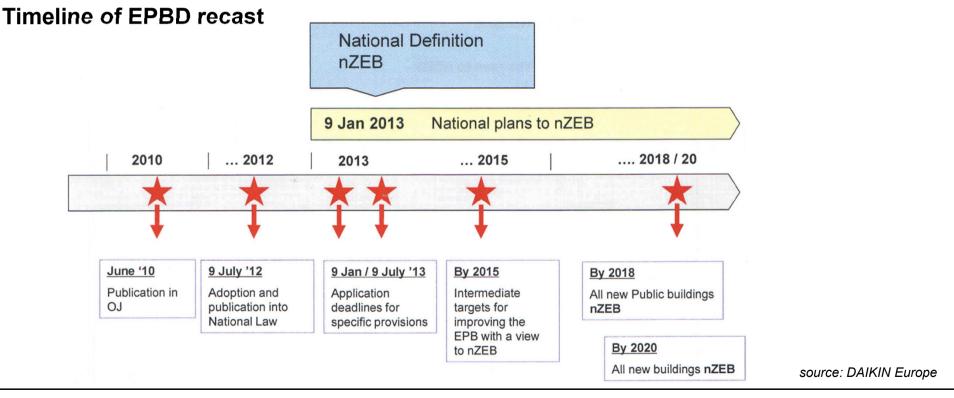
Framework – Political targets and strategies

- All new residential (commercial) buildings shall be Net Zero energy buildings (NZEB) by 2020 (2025) => "maximum efficiency houses", also retrofit in focus
- All buildings shall be Net Zero by 2050

Japan

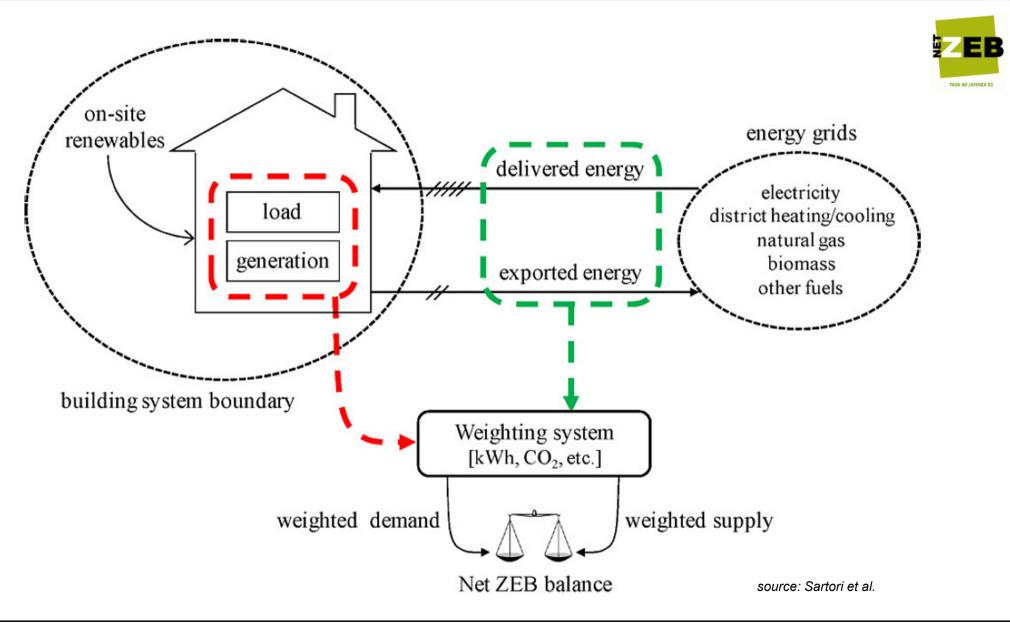
Heat pumps and high performance buildings are considered as key technologies to mitigate climate change

HSR HOCHSCHULE FÜR TECHNIK RAPPERSWIL FHO Fachhochschule Ostschweiz



nZEB Definition

EPBD DEFINITION "Nearly Zero Energy Building (nZEB)"


- Means a building that has a very high energy performance
- *Nearly zero or very low energy amount* should be covered to *very significant extent* by energy from renewable sources, including renewable energy produced on-site or nearby
- => Presently no common definition of nZEB, neither in policy nor in the market

NZEB Definition

HSR HOCHSCHULE FÜR TECHNIK RAPPERSWIL

FHO Fachhochschule Ostschweiz

Principle of Nearly Zero Energy Buildings (NZEBs)

energy supply et Lero energy performance renewable energy generation energy efficiency passive approaches energy consumption Based on Lollini

- Framework for consistent definition
- Building system boundary Physical boundary ("on-site") Balance boundary ("type of energy")
- Weighting system Metrics ("Primary energy, CO_2 ") Symmetric weighting Time dependent weighting
- Net ZEB Balance Balancing period ("annual or shorter") Type of balance (e.g. "import/export") **Energy efficiency requirements** Energy supply requirements
- Temporal energy match characteristic Load mismatch (e.g. summer surplus) Grid interaction
- Measurement and verification

Open questions

- How is an NZEB reached most energy- and cost-effectively?
- How should heat pumps be integrated?

Objectives

- 1. Optimisation of heat pump concepts for NZEB
- 2. Evaluation of system integration options for NZEB
- 3. Requirements for further developments to exploit specific performance opportunities (e.g. multi-source ability, capacity control, temperature lift)

Scope

HSR

- Residential buildings (focus on space heating, DHW)
- small commercial buildings (focus on space heating/cooling, ventilation)

IEA HPP Annex 40 – Task 1: State-of-the-art analysis

Task 1: State-of-the-art technology and concepts

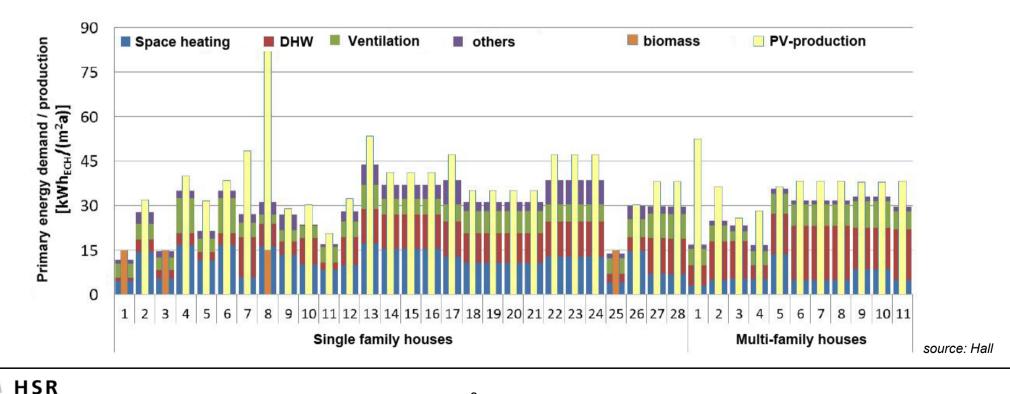
- Classification of available envelope and system technology as well as concepts for NZEB
- Definition of an NZEB for the IEA HPP Annex 40

Steps:

- Survey/evaluation of existing technology and concepts
- Check of suitability for new buildings and retrofit
- Summary of most promising state-of-the-art concepts/technologies
- Missing components and development options for NZEB

Deliverables (as country reports)

- Categorisation of concepts for NZEBs
- Technology matrix of suitable building and system components



FHO Fachhochschule Ostschweiz

Evaluation Swiss MINERGIE-A® Label - residential

- MINERGIE-A[®] is a common approach for NZEB in Switzerland
- Evaluation of 39 certified residential MINERGIE-A[®] houses
- Average weighted demand is about 29 kWh/(m²a) to be compensated with PV-production
- Average installed peak power of the solar PV system is 5.5 ± 3 kW_p
- 80% of the buildings use heat pumps, only few use biomass, some solar DHW

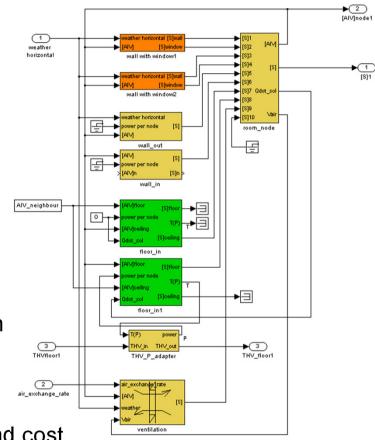
RAPPERSWII

HOCHSCHULE FÜR TECHNIK

8

MINERGIE-A®

Task 2: Assessment of concepts


- Assessment of
 - technology options
- regarding the performance and cost

Steps

- Comparison of technologies and concepts
- Improvement of concepts by calculation/simulation
- Design and performance evaluation
- Control of systems
- Recommendation on system configuration and operation

Deliverables

- Adapted technology for NZEB regarding performance and cost
- Improved building technology and integration

HOCHSCHULE FÜR TECHNIK

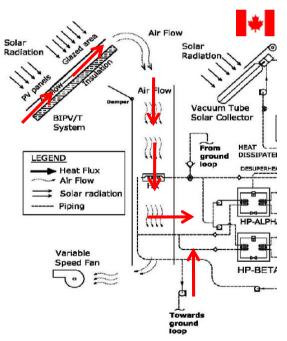
HSR

RAPPERSWII

Task 3: Technology development and field monitoring

- Requirements for technology development
 - of heat pumps including the source and sink systems
- Investigation of prototype systems in lab- and field testing

Approaches

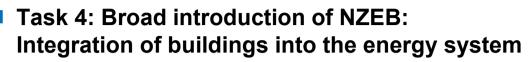

- Building integration of renewable energies
- Multi-source heat pumps
- Advanced controls, capacity control
- Efficient DHW solutions
- Refrigerants

Deliverables (as country reports)

- Adapted components and systems as prototypes
- System concepts approved by field-monitoring

source: Pogharian, Candanedo, Athienitis

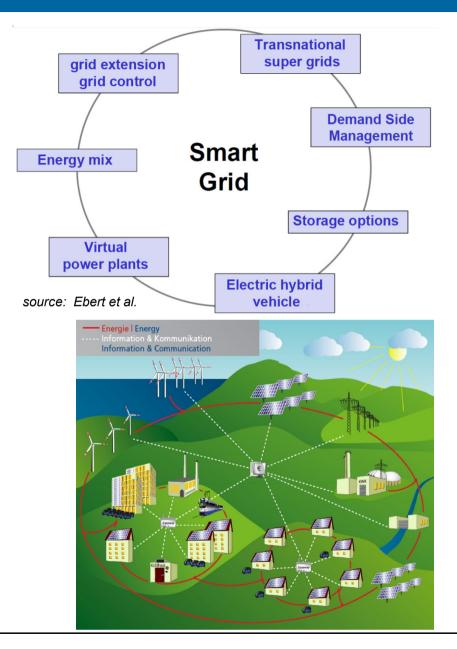
10


FHO Fachhochschule Ostschweiz

HOCHSCHULE FÜR TECHNIK

HSR

RAPPERSWII


IEA HPP Annex 40 – Task 4: Specific questions for broad integration

- Load mismatch
- Grid interaction
- Needs for storage, e.g.
 - Electrical or thermal storage systems
 - Heat pump to store electrical surplus as heating/cooling energy

Approaches

- How can self-consumption be optimised?
 - Potentials of "smart" (ICT)-technologies
 - Load/generation management
 - Storage integration
- Is a definition for a single building useful?
 - "Clusters of buildings"
 - "Smart cities"

11

HOCHSCHULE FÜR TECHNIK

HSR

RAPPERSWII

IEA HPP Annex 40 – Deliverables

Scope

- Concepts and technologies for NZEB with heat pumps
- Residential and small commercial buildings
- All buildings services as needed

Deliverables

- Technical recommendations, methods and tools for concepts and design
- Test results of prototype technologies
- System assessment by simulations
- Simulations models
- Field experience of systems in NZEB
- Best practice systems
- Accompanying technical reports

Project time

July 2012 – June 2015

FHO Fachhochschule Ostschweiz

HOCHSCHULE FÜR TECHNIK

HSR

RAPPERSWIL

C. Wemhoener, IEA HPP Annex 40, SHC Task definition workshop, Paris 2013

IEA HPP Annex 40 – Participating and interested countries

Participating countries (state March 2013)

- CA: CanmetENERGY, Natural Ressources, Hydro-Quebec
- CH: Univ. Appl. Sc. Rapperswil, Univ. Appl. Sc. Northwestern Switzerland
- JP: Uni Nagoya, Japanese manufacturers
- NL: SEV
- NO: SINTEF Energy Research, COWI, Enova SF
- SE: SP, SVEP
 - US: ORNL, NIST, University of Maryland

Interested countries

- BE: Daikin Europe NV, Uni Liège, Th!nk E
- DE: Viessmann GmbH, Uni Nürnberg, HLK Stuttgart GmbH, Fraunhofer ISE
- FI: Aalto University, VTT, SULPU
- KR: Korean Institute of Energy Research (KIER)

C. Wemhoener, IEA HPP Annex 40, SHC Task definition workshop, Paris 2013

Time schedule of the Annex based on Kick-off meeting

Year	2012						2013											2014										2015				
Month	J	Α	S	0	N	D	JF		AN	M	J	J	Α	SC	N	D	J	F	Μ	A	N	J	A	S	0	N	D	JF	M	Α	Μ.	Ţ
1. Kick-off meeting					Ť			T	T				T	T	T						T	T	Ī				Ť		Π	Π		
2. Task 1																																
3. country report Task 1																																
4. Meeting Task 1, Preparation Task 2&3																																
5. Task 2&3																						1										
6. Meeting Task 2&3																																
7. Task 2&3 report																																
8. Meeting Task 2,3 &4, Workshop HP Conference																																
9. Task 4																																
10. Task 4 report																																
11. Meeting Deliverables																																
12. Preparation Deliverables																																
13. Annex final report to ExCo																																
14. Final Workshop																																

Report

Task working time

FHO Fachhochschule Ostschweiz

Links between the projects

Common items

- NZEB could be an application case for solar cooling & heating
- Load match evaluation and load management
- Simulation work
- Developments for heat pump and chiller
- Integration options of heat pump/chiller with PV and solar thermal
- Storage integration

Conclusion

- Projects have synergies
- Projects also complementary (focus cooling, countries involved, systems etc.)
- Collaboration useful

IEA HPP Annex 40 – Heat pump concepts for nZEB

Thank you for your attention!

Kick-off meeting IEA HPP Annex 40 in July 2012 at HSR Rapperswil, Switzerland

FHO Fachhochschule Ostschweiz

